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GUESSING THE NEXT OUTPUT OF 
A STATIONARY PROCESS 

BY 

DONALD S. ORNSTEINt 

ABSTRAC'I"  

Suppose we start watching a stationary process at time 0. Then the conditional 
probability of a particular output at time - 1, given the outputs at times 0 
through k, will converge. In this paper we will show that we can make a guess, 
depending only on the outputs from 0 through k (and not, of course, on the 
process) that will converge to the above limit with probability one. 

Introduction 

In this p a p e r  we will cons ide r  s t a t ionary  processes  that  pr in t  out  two symbols  

0, or  1."  (By a s ta t ionary  process  we will mean  a shift invar iant  me a su re  on 

doub ly  infinite sequences  of 0, 1 or  equ iva len t ly  a me a su re  p rese rv ing  t ransfor-  

ma t ion  and a par t i t ion  into two sets.)  W e  will a s sume the process  is ergodic.* 

W e  will be conce rned  with the  cond i t iona l  p robab i l i t y  that  the  process  will 

pr int  out  a, 0 at t ime 1 given its past .  This  makes  sense as fol lows:  Let  a, be  the  

p r in tou t  at t ime i. Let  G(ao, a_,,. . . ,  a-k)denote the  cond i t iona l  p robab i l i t y  of 

a~ = 0 given that  the  p r in tou t  at t imes  0 th rough  - k  were  (ao," ", a-k). The 
Mar t inga le  conve rgence  t h e o r e m  says that  with p robab i l i t y  one  G(ao,... ,  a-k) 
converges  as k ~ oo. 

If we know the infinite past  we can find (with p robab i l i t y  one)  each 

G (ao," ", a-k) because  the  e rgod ic  t h e o r e m  (or law of  large  numbers )  says that  

the  p robab i l i t y  of any finite s tr ing is equal  (with p robab i l i t y  one)  to the  f r equency  

with which it will occur  in the  past .  

'Research supported in part by NSF MCS 76--09159 
"' (Our results hold with no added difficulties for stationary processes that print out a finite or 

countable number of symbols.) 
* This is no real restriction because every stationary process decomposes into ergodic ones, i.e. all 

non ergodic processes are obtained by randomly picking an ergodic process. 
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This means that if we are given the infinite past of a stationary process we can, 

without any further information about  the process, determine the probabili ty 

that the next printout will be a O. 

Thomas  Cover  pointed out that we can ask a more subtle question: is there a 

guessing scheme such that given a sequence of O, 1 of length k there is a guess, 

f ( a o , . .  ", a - k )  ( f  is some number  between 0 and 1), with the proper ty  that, for 

any stationary process, if we apply f to the last k outputs and let k go to infinity, 

then with probabili ty one (the probabili ty is given by the process) f(a0, �9 �9 ", a -k)  

will converge to the probabili ty that at = 0 given the past. 

The purpose of this paper  is to show that such a scheme exists. 

We could rephrase our problem (reversing time) as follows: Suppose we start 

watching a stationary process at time O. The conditional probabili ty of a 0 at time 

- 1 given the printout up to t ime k will converge and we want to make  a guess, 

based only on the printout up to t ime k, that will converge to the same thing. 

The problem is especially interesting in the case of deterministic processes, or 

processes of 0 entropy (i.e., the conditional probability of a 0 given the past is 0 

or 1). In this case it is said that we can predict the future from the past, or the 

past f rom the future. It was not commonly realized until Cover  pointed it out 

that that s tatement could have many meanings. A special case of the result of 

this paper  shows that the above is true in a strong sense, that is: if we start 

watching a deterministic process at time 0 (we are given no information about 

the process) we can, at each finite time, make a guess as to the process printed 

out at time - 1 before we started watching and with probability one our guesses 

will converge to the correct answer. 

We will now construct a scheme for guessing the output at - 1 ,  given the 

outputs starting at O. 

We will start with some notation. Let a0, at, �9 �9 ", ak be a sequence of O's or l ' s  

(a, = 0 or a, = 1). Let bo,. �9 ", b,, l < k be another  such sequence. We will say that 

bo, " �9 ", bt occurs in ao, " �9 ", ak at a s if as+~ = b~, 0 < i < I. I f  as-, = 0 we will say  that  

the-occurrence is preceded by O. If we are given  a sequence  ao, " �9 ", at ,"  �9 �9 define 

g ( i , j ) ,  i < j  as follows: Let r denote  the number  of occurrences of ao , - - - ,  a~ in 

ao , - - - ,  as, not counting the occurrence at ao. Let ro denote  the number  of the 

above occurrences that are preceded by O. L e t  g ( i , j ) =  ro/r (the g ( i , j )  are 

" reasonable"  guesses for the conditional probability that a- i  = 0). We will say 

that ao," �9 ", ak is (N,  K,  e )  acceptable if there is a subsequence K = a~o, < a,, < 

�9 " �9 < an~ = a~ such that 

(1) Ig(i ,  n j ) - g ( s , n , ) [ < e  if K < i < n j _ ~ ,  K < s < n , _ l  and I < = j < - N ,  1 < 

t < N .  
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(2) If K _-< i _-< nj_,, 1 =< j _-< N, then the n u m b e r  of  occur rences  of  a 0 , "  ", a~ in 

ao, �9 �9 ", a,j is _-> K. 

We  will re fer  to ao, �9 �9 ", a~ toge the r  with K = no < �9 �9 �9 < nN = k as a partitioned 

sequence (the par t i t ion tells us which "guesses"  g ( i , j )  to consider).  

W e  can now descr ibe  our  guessing scheme.  Let  ao, al ,  �9 �9 �9 be  the ou t comes  of 

our  process.  Pick a sequence  e, ~ 0. Wai t  until there  is an l, such that  for  some  

Nx, a0,-"  ", a~, is (N, ,  N, ,  e,) acceptable .  Then  predict  g(N~, l,). K e e p  making  the 

same  guess until there  is an 12 such that  there  is an N2 and ao , - -  ", a~ is (N2, N2, e2) 

etc. 

LEMMA 1. Given  e > 0 and M then with probability 1 there will be an L such 

that if  I > L then ao, " ", a, is ( N, N, e )  acceptable [or some N > M.  

PROOF. T h e  Mar t inga le  convergence  t h e o r e m  tells us that  given e > 0 there  

is an M such that  if j > M and i > M, then the condi t ional  probabi l i ty  that  

a_~ = 0, given ao , ' "  ", a, or  a o , "  ", a ,  differ by <�89 The  l e m m a  now follows 

f rom the Birkhoff  ergodic  t h e o r e m  (law of large numbers) .  

Def ine  G ( a o , "  ", a~) to be  the  condi t ional  probabi l i ty  that  a_~ is 0 given that  

the ou tpu t s  of  the process  at t imes 0 through k are a 0 , "  ", ak. W e  will say that  

ao , . . . , a~  is ( N , K , a )  bad if there  exists K = n o < m . . . < n s = l ,  and 

g(i, n j ) -  G ( a o , . . . ,  a~)>  a for  all K _-< i _-< nj-i, 1 =<j _-< N (or if all of the above  

n u m b e r s  are < - a ) .  

LEMMA 2. Either our guessing scheme converges to the right guess or there is an 

ct > 0 and increasing sequences l~, N~ such that ao," �9 ", a~, is (N,, N~, a )  bad. 

PROOF. If our  guessing scheme does  not  work  there  will be  an a > 0 such that  

we are wrong by > 2 a  infinitely often.  The re  is an M (Mart ingale  conve rgence  

t heo rem)  such that  if i > M  and j > M  then 

1 
I G ( a o , "  ", a , ) -  G ( a o , . . . ,  aj)l <]-6-6 a. 

If a o , "  ", a, is (N, N, (1/100)a)  acceptab le  then all of the g ( i , j )  that  we used are 

within (1/100)a of each other.  There fo re ,  if N > M, /3  < (1/100)a and a o , "  ", at 

is (N, N, /3)  acceptab le  and gives a guess  that  is off by > 2 a  then ao," �9 ", a~ must  

be  bad. 

LEMMA 3. Given  a > 0 there is a /3  < 1 such that i[ 1 /K < (1/100)a then the 

probability that there will be an l and  N such that ao, '" ", a~ is (N, K, a )  bad is 

~ /3~. 
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L e m m a  3 implies  easily that  our  guessing scheme  will conve rge  with probabi l -  

ity one. T h e  p roof  of L e m m a  3 will depend  on the next  two lemmas .  

T h e  badness  condi t ion states the exis tence of a sequence  and  a part i t ioning.  

The  next  l e m m a  gives us canonical  sequences  and part i t ionings.  This  m a k e s  it 

easier  to c o m p u t e  probabil i t ies .  

LEMMA 4. A s s u m e  ao, '" ", ak is (N, K, a )  bad. Le t  n,, i <- N be the smallest  

integer such that ao, " ", a,, is ( i, K, a )  bad. Then ao, " " ", a,N is ( N, K, a )  bad with 

respect to the partition K = no < n, < �9 �9 �9 < n,~ = I. 

PROOF. We must  check that 

(a) g (i, nj) - G (a0, �9 �9 ", a,)  > a and 

(b) ao , ' "  ", a, occurs  > K t imes in ao," �9 ", a~, for  all pairs  nj, 1 _-< j <_- N and 

i =  < hi-1. Consider  one nj. Because  a 0 , " ' , a , ,  is ( ] , K , a )  bad there  exists 

K = f i o < h , < h j  = nj. 

(a) and (b) must hold for nj and all i less than hj_~. We  will the re fore  be  

finished if we show h~-l => nj-t. Howeve r ,  a o , "  .,a~j_, is ( j -  1 , K , a )  bad  and 

therefore  rij_, => nj_,. 

LEMMA 5. Given a > 0 there exists a [3 < 1 with the [ollowing property. Fix a 

sequence b o , "  ", b,. Le t  p (bo,. "., b , )  denote the conditional probability o f  printing 

a sequence a o , ' " , a t ,  l >  n given that  a, = b~, O<=i<= n and such that (1) 

g ( n , l ) - G ( a o , " ' , a . ) >  a and (2) a o , ' " , a n  occurs more than 100/a t imes in 

a o , "  ", a~. Then p (bo,'" ", b~) < [3. 

PROOF. Using the ergodic t h e o r e m  we can pick an infinite s equence  co, ci , -  �9 �9 

with the p rope r ty  that  for  any finite sequence  d , , . . . , d ,  the f requency  of 

occurrences  of d ~ , . . . ,  dr will equal  the probabi l i ty  that the i th output  is d ,  

1 = i <= j. W e  will the re fore  c o m p u t e  probabi l i t ies  by comput ing  f requencies  of 

occurrences  in Co, c~. 

It will be  convenient  to p rove  our  i e m m a  with l restr icted to be < some  M ;  

and note  that for  all M we get the same  [3. 

Look  at all of the occurrences  of b0, �9 �9 ", b,. We  will call an occur rence  special 

if it can be  ex tended  to the occur rence  of a sequence  a0," �9 ", a~ satisfying (1), (2), 

and l < M. Becasse of (1) and (2) the occur rences  of b o , "  ", b, in the occur rence  

of a0,- �9 ", at (including the first) will fo rm a collection of consecut ive  occurrences  

in which the pe rcen tage  of occurrences  p receded  by 0 is too high. (We need (2) 

because  we are including the first occurrence . )  Call such a collection a special  

collection. We now take  the next  special occur rence  of bo," �9 ", b, that  occurs to 

the right of the previous  special collection and form the special collection 
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starting with it. (This will be disjoint from our previous special collection.) If we 

proceed in this way, we will get a set, S, of disjoint, special collections, which 

include all of the special occurrences. Since the percentage of occurrences 

preceded by 0, in S, is greater than the percentage of occurrences preceded by 0 

in the whole string, it follows that a certain percentage of occurrences will not be 

in S and will therefore not be special. (Note that this percentage can be taken to 

be independent of M.) 

PROOF OF LEMMA 3. We will show that the probability of printing out an 

(N + 1, K, ~) bad sequence is </3 times the probability of an (N, K, a )  bad 

sequence. Partition the infinite sequences, that have an (N,K,a) bad initial 

segment, according to their canonical (N, K, or) bad sequence a0 ," - ,  ann defined 

in Lemma 4. Call these classes C, In each C~ the probability (by Lemma 5) of 

extending a 0 , "  ", ann to some ao , ' . . ,  a~, where a 0 , " . ,  an,, occurs more than 

100/a times in ao , . . . ,  a~ and I G(ao," ", anN)- g(nN, I)1 > a, is less than/3. But 

by Lemma 4 if ao , . . . ,  a,,~ extended to an (N + 1, K + or) bad sequence it would 
have an extension of the above form. 
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